By Gaël Varoquaux ,Yannick Schwartz ,Russell A. Poldrack,Baptiste Gauthier,Danilo Bzdok,Jean-Baptiste Poline,Bertrand Thirion
Abstract
To map the neural substrate of mental function, cognitive neuroimaging relies on controlled psychological manipulations that engage brain systems associated with specific cognitive processes. In order to build comprehensive atlases of cognitive function in the brain, it must assemble maps for many different cognitive processes, which often evoke overlapping patterns of activation. Such data aggregation faces contrasting goals: on the one hand finding correspondences across vastly different cognitive experiments, while on the other hand precisely describing the function of any given brain region. Here we introduce a new analysis framework that tackles these difficulties and thereby enables the generation of brain atlases for cognitive function. The approach leverages ontologies of cognitive concepts and multi-label brain decoding to map the neural substrate of these concepts. We demonstrate the approach by building an atlas of functional brain organization based on 30 diverse functional neuroimaging studies, totaling 196 different experimental conditions. Unlike conventional brain mapping, this functional atlas supports robust reverse inference: predicting the mental processes from brain activity in the regions delineated by the atlas. To establish that this reverse inference is indeed governed by the corresponding concepts, and not idiosyncrasies of experimental designs, we show that it can accurately decode the cognitive concepts recruited in new tasks. These results demonstrate that aggregating independent task-fMRI studies can provide a more precise global atlas of selective associations between brain and cognition.
Author summary
Cognitive neuroscience uses neuroimaging to identify brain systems engaged in specific cognitive tasks. However, linking unequivocally brain systems with cognitive functions is difficult: each task probes only a small number of facets of cognition, while brain systems are often engaged in many tasks. We develop a new approach to generate a functional atlas of cognition, demonstrating brain systems selectively associated with specific cognitive functions. This approach relies upon an ontology that defines specific cognitive functions and the relations between them, along with an analysis scheme tailored to this ontology. Using a database of thirty neuroimaging studies, we show that this approach provides a highly-specific atlas of mental functions, and that it can decode the mental processes engaged in new tasks.
...
0 Comments